Tomášek, V., V. Holeyšovský, O. Mikeš	Wassenaar, J. S., see Gruber, M 359
and F. Šorm	Wessels, J. S. C.
(Peptides isolated from peptic hydroly-	(Photoreduction of 2,4-dinitrophenol
sate of diisopropylphosphoryl-trypsin) 570	by chloroplasts) 19
TORRIANI, A.	WHITTEN, W. K., see GOTTSCHALK, A 183
(Influence of inorganic phosphate in	WIAME, J. M., see Bourgeois, S 136
formation of phosphatases by E. coli) 460	WILLIAMS, F. R. AND L. P. HAGER
TSUGITA, A.	(Solubilization and enzymic activity of
(N-terminal sequence of tobacco-	bacterial cytochrome b_1) 566
mosaic-virus protein) 145	WILSON, P. W., see TEMPERLI, A 557
TUPPY, H., see NEILANDS, J. B 351	WITT, I., see HOLZER, H 16
TURNER, M. E., see Hoch, H 410	Wolff, J.
Ullrich, L. K., see Park, R. W 179	(Thyroidal iodide transport. I. Cardiac
Velasco, J., see Marcus, A 365	glycosides and the role of potassium) 310
VESTERMARK, A., see BLOMBÄCK, B 502	Wong, R. C. and I. E. Liener
Voelker, I., see Von Holt, C 88	(Active and inactive modifications of
VON HOLT, C., I. VOELKER AND L.	trypsin induced by acetylation) 86
Von Holt	YAMAMURA, Y., see Morisawa, S 253
(Markierung von Insulin mit Tritium) 88	Young, E. M., see Sorof, S 559
VON HOLT, L., see VON HOLT, C 88	

SUBJECT INDEX

Acetaldehyde, inhibition of yeast carboxylase by —— (Gruber and		in cell-free system from Tetrahymena pyriformis, inhibition by chloram-	
Wassenaar)	355	phenicol and chlortetracycline (MAGER)	150
N-Acetyl groups, in acid mucopolysac- charides, micro-method for determi-		Amino acids, in insect blood, effect of diet (IRREVERRE AND LEVENBOOK)	358
nation (LUDOWIEG AND DORFMAN) Adenosine phosphatases, cobra venom,	212	Amino acids, oxidation by rat-liver mito- chondria (HIRD AND MORTON)	222
observations (KAYE)	34	Amino acids, studies on N-terminal se-	222
Adenosine triphosphate, activation of	٠.	quence of TMV protein (Tsugita)	145
methionine for transmethylation, fail-		Amino acids, synthesis from carboxylic	
ure of 3,5'-cycloadenosine to replace —— (Mudd, Jamieson and Cantoni)	164	acids by isolated rat diaphragm (MAN-	
S-Adenosylmethionine, formation by bar-	104	CHESTER)	333
ley extracts (MUDD)	354	tides, stabilization by desulphurization	
Adenylate kinase, of mammalian erythrocytes (Cerletti and Bucci)		and hydrogenation using tritium (Keil	
Aerobacter aerogenes, adaptive formation	45	AND ŠORM)	140
of a vic glycol dehydrogenase (LAM-		Azotobacter vinelandii, nitrogen fixation,	
BORG AND KAPLAN)	284	effect of oxygen (PARKER AND SCUTT)	230
Aerobacter aerogenes, comparison of some vic glycol dehydrogenase systems		Bacillus stearothermophilus, thermal de- naturation of isolated DNA (MARMUR)	342
(Lamborg and Kaplan)	272	Bacteriochlorophyll, in its natural state,	344
Aerobacter aerogenes, some properties of	•	spectral and redox properties (Goed-	
soluble and particle-bound hydro-		HEER)	3 89
genase (Temperli, Pengra and Wilson)	557	Basic proteins, presence in microsomes (Butler, Cohn and Simson)	386
Alkaline phosphatase, see Phosphatase	331	Benzoyl-L-arginine ethyl ester, trypsin-	300
Amino acids, composition of human		catalyzed hydrolysis, kinetics in di-	
haemoglobin A ₂ (Rossi-Fanelli, De Marco, Benerecetti and Guacci).	280	oxane-water mixtures (Inagami and	6.
Amino acids, feedback control on syn-	300	STURTEVANT)	64
thesis of enzymes by — during		aldehyde (Gruber and Wassenaar).	355
growth of <i>Proteus morganii</i> (Bour- GEOIS, WIAME AND LELOUCHIER-		[14C]Carboxypolyglucose, volume of dis-	
Dagnelie)	136	tribution in pellets of rat-liver mito- chondria (Share)	154
Amino acids, incorporation into proteins	- J -	Cardiac glycosides, effect on thyroidal	- 54

iodide transport (Wolff)		(Manchester)	555
a-Casein, proteolysis by rennin, immuno-		2,4-Dinitrophenol, photoreduction of ——	
logical study (GARNIER)	246	by chloroplasts (Wessels)	195
Cell disruption, by glass beads, avoidance		Diphosphopyridine nucleotide, demon-	
of alkaline effects (Kolb)	373	stration of new form in rat liver mito-	
Cellulose polysulphatase, an enzyme at-		chondria (Purvis)	435
tacking cellulose polysulphate and		Diphosphopyridine nucleotide, reduced	
charonin sulphate (Таканазні and		, nature of fluorescence of com-	
Едамі)	375	plexes of enzymes with (FISHER	
Charonin sulphate, hydrolysis of sulphuric		AND McGregor)	562
ester bonds by cellulose polysulphatase		DPNH-cytochrome c reductase, isooctane-	
(Takahashi and Egami)	375	extracted, observations on reactivation	
Chloramphenicol, inhibition of amino acid		with [14C]-α-tocopherol (Draper and	
incorporation into proteins, cell-free		CSALLANY)	161
system from Tetrahymena pyriformis		DPNH-oxidase, reaction mechanism	
(Mager)	150	(Mackler, Labbe and Latta)	345
Chloromercuribenzoate resin, for selective		Electron carriers, phosphorylation coupled	
binding of nonprotein sulphydryl com-		to electron transport mediated by high	
pounds (McCormack, Goldzieher		potential —— (JACOBS AND SANADI).	12
AND BESCH)	293	Electron transport, mitochondrial swelling	
Chloroplasts, photoreduction of 2,4-di-		and —— (Chappell and Greville) .	483
nitrophenol by —— (Wessels)	195	Electron transport system, isolation and	
Chlortetracycline, inhibition of amino acid		properties of soluble cytochrome c_1 ,	
incorporation into proteins, cell-free		addendum (Green, Järnefelt and	
system from Tetrahymena pyriformis		TISDALE)	160
(Mager)	150	Electrophoresis, fractionation by free	
Chromatography, paper, differenti-		(Heckly)	370
ation between α -monoamino acids and		Electrophoresis, immuno, study of	
other ninhydrin-positive substances		proteolysis of α -case by rennin	
(Olesen, Larsen and Kjær)	148	(Garnier)	246
Chromatography, paper —, heparin and		Electrophoresis, structural components of	
related sulphated mucopolysaccharides		Micrococcus lysodeikticus, study (Few,	
(Spolter and Marx)	123	GILBY AND SEAMAN)	130
Chromatography, paper ——, separation		Electrophoresis, sulphation products of	
of phosphate esters (RAPPOPORT AND		insulin (Sluyterman and Kwestroo-	
Chen)	156	Van den Bosch)	102
Clostridium pasteurianum, nitrogen fix-		Electrophoresis, zonal column, im-	
ation in cell-free extracts (CARNAHAN,		proved protein resolution of concen-	
	188	trated tissue extract (Sorof, Young,	
Cobra venom, see Venom		Spence and Fetterman)	559
Copper, in purified cytochrome a, proper-		Enzyme-DPNH complexes, nature of	
ties (Takemori, Sekuzuand Okunuki)	158	fluorescence of —— (Fisher and	
[4-14C]Corticosterone, metabolism by fibro-			562
plasts, strain U 12-79 (BERLINER, SWIM		Enzymes, Proteus morganii, feedback con-	
AND DOUGHERTY)	184	trol on synthesis by amino acids during	
3,5'-Cycloadenosine, activation of methi-		growth (Bourgeois, Wiame and	
onine for transmethylation, failure of			136
to replace ATP (MUDD, JAMIESON	_	Erythrocytes, mammalian, adenylate	
AND CANTONI)	164	kinase of —— (CERLETTI AND BUCCI)	45
Cytochrome a, properties of copper in		Escherichia coli, fine-structure genetic and	
purified —— (TAKEMORI, SEKUZU AND		chemical study of alkaline phosphatase	
OKUNUKI)	158	(GAREN AND LEVENTHAL)	470
Cytochrome b_1 , bacterial, solubilization		Escherichia coli, influences of inorganic	
and enzymic activity (WILLIAMS AND		phosphate in formation of phospha-	
HAGER)	566		460
Cytochrome c_1 , isolation and properties	_	Escherichia coli, isolation of thymidine di-	
(GREEN, JÄRNEFELT AND TISDALE).	160	phosphate rhamnose and a novel thy-	
Dehydroepiandrosterone, conversion of		midine diphosphate sugar compound	. 0
pregnenolone to —— (GOLDSTEIN, GUT	***	(OKAZAKI, OKAZAKI AND KURIKI)	384
AND DORFMAN)	190	Fibrinogen, rabbit, [35S] sulphate incorpo-	
Desoxyribonucleic acid, see Nucleic acid		ration into fibrinopeptide B (BLOM-	50 0
Desoxyribonucleotides, see Nucleotides		BÄCK, BOSTRÖM AND VESTERMARK)	502
Diaphragm, rat, synthesis of amino acids from carboxylic acids by isolated ———		Fibroplasts, strain U 12-79, metabolism of	
moni carboxyne acids by isolated ———		[4- ¹⁴ C]corticosterone by — (Ber-	

LINER, SWIM AND DOUGHERTY)	184	genase by, rat-liver homogenate	
Follicle-stimulating hormone, see Hormone		(Koide, Chen and Freeman)	374
Fructose, conversion to glucose, guinea-pig		β -Lactoglobulin, mixed monolayers of	
intestine (GINSBURG AND HERS)	427	phosphatides and —— (PAYENS)	539
Glucose, conversion of fructose to,		Lecithin, hydrolysis by venom phospho-	
guinea-pig intestine (GINSBURG AND		lipase A, fatty acid chain length prefer-	
Hers)	427	ence of enzyme (Marinetti, Erbland	
D-[1-14C]- and D-[6-14C]Glucuronolactone,		and Stotz)	534
metabolism by ripening strawberry		Lecithin, hydrolysis by venom phospho-	
(FINKLE, KELLY AND LOEWUS)	332	lipase A, structure of formed lysoleci-	
vic Glycol dehydrogenase, Aerobacter aero-		thins (Marinetti, Erbland, Temple	
genes, adaptive formation (LAMBORG		and Stotz)	524
AND KAPLAN)	284	Lens protein, calf, fractionation (Spector)	191
vic Glycol dehydrogenase, Aerobacter aero-		Lipoic acid, component of ketoglutarate	
genes, comparison of some systems		dehydrogenase complex (Massey)	447
(LAMBORG AND KAPLAN)	272	Liver, rabbit, studies on soluble RNA,	
Guanidine, assimilation and metabolism	•	action of polynucleotide phosphorylase	
by Pseudomonas aeruginosa (BERN-		(SINGER, LUBORSKY, MORRISON AND	
неім)	173	CANTONI)	568
Haemoglobin, volume of distribution in		Liver, rat, demonstration of new form of	J
pellets of rat-liver mitochondria		DPN and TPN in mitochondria	
(Share)	154	(Purvis)	435
Haemoglobin A2, human, amino acid com-	• .	Liver, rat, inhibition of 3a-hydroxysteroid-	
position (Rossi-Fanelli, De Marco,		mediated transhydrogenase by △4-3-	
BENERECETTI AND GUACCI)	38o	ketosteroids (Koide, Chen and Free-	
Halogenated pyrimidines, see Pyrimidines	-	MAN)	374
Heparin, and related sulphated mucopoly-		Lysolecithin, formation after hydrolysis of	0,
saccharides, paper chromatography		lecithin by venom phospholipase A,	
(SPOLTER AND MARX)	123	structure of —— (MARINETTI, ERB-	
Histidine, determination with Pauly re-	•	LAND, TEMPLE AND STOTZ)	524
action, effect of oxygen (SLUYTERMAN)	218	Malate synthetase, in germinating seeds	
Hormone, follicle-stimulating -, in-		(MARCUS AND VELASCO)	365
activation by enzymic release of sialic		Methionine, activation for transmethyl-	٠.
acid (Gottschalk, Whitten and		ation, failure of 3,5'-cycloadenosine to	
Graham)	183	replace ATP (MUDD, JAMIESON AND	
Hydrogenase, Aerobacter aerogenes, soluble	Ü	Cantoni)	164
and particle-bound, some properties		S-Methylcysteine, occurrence in insect	
(TEMPERLI, PENGRA AND WILSON)	557	blood, effect of diet (IRREVERRE AND	
3a-Hydroxysteroids, transhydrogenase		T	358
mediated by —, inhibition by Δ^4 -		5-Methylcytidine, isolation from RNA	00
3-ketosteroids, rat-liver homogenate		(Dunn)	176
(Koide, Chen and Freeman)	374	Methylmalonyl-CoA isomerase, effect of	•
Immunoelectrophoresis, see Electrophoresi		cofactor form of vitamin B ₁₂ on ac-	
Insulin, labelling with tritium (Von Holt,		tivity (Gurnani, Mistry and Connor	
VOELKER AND VON HOLT)	88	T	187
Insulin, sulphation, electrophoresis of		Micrococcus lysodeikticus, electrophoretic	•
products obtained (SLUYTERMAN AND		study on structural components (FEW,	
KWESTROO-VAN DEN BOSCH)	102	GILBY AND SEAMAN)	130
Intestine, guinea pig, conversion of fruc-		Microsomes, presence of basic proteins in	
tose to glucose (GINSBURG AND HERS)	427	(Butler, Cohn and Simson)	386
Iodide, thyroidal —— transport, cardiac		Mitochondria, Ehrlich-ascites cells, phos-	
glycosides and role of potassium		phorylation coupled to α -ketoglutarate	
(Wolff)	316	oxidation (SILK AND HAWTREY)	347
Ionic equilibria, in protein conjugate of		Mitochondria, oxidation of isocitrate,	
a sulfonamide type (KLOTZ AND FIESS)	57	study (Ernster and Glasky)	168
Isocitrate, mitochondrial oxidation of —,		Mitochondria, rat liver, demonstration of	
study (Ernster and Glasky)	168	new form of DPN and TPN (Purvis)	435
α-Ketoglutarate, phosphorylation coupled		Mitochondria, rat liver, oxidation of L-	
to oxidation of —, Ehrlich-ascites		amino acids (HIRD AND MORTON)	222
mitochondria (SILK AND HAWTREY) .	347	Mitochondria, rat liver, transhydrogenase	
a-Ketoglutarate dehydrogenase complex,		and TPNH-oxidase activities (ERN-	
composition (Massey)	447	STER)	170
Δ^4 -3-Ketosteroids, inhibition of 3α -hy-		Mitochondria, rat liver, volumes of distri-	
droxysteroid-mediated transhydro-		bution of haemoglobin, [14C]carboxy-	

polyglucose and [14C] sucrose in pellets		SCHALK)	513
(Share)	154	Oxidative pentose phosphate cycle, acti-	
Mitochondria, swelling by ferricyanide		vation in yeast cells by ammonium	
and electron transport (Chappell and			163
Greville)	483	Oxidative phosphorylation, nature and	
Mitosis, slime mold with synchronous —,		origin of inhibitor present in sarco-	
nucleic acid metabolism (NYGAARD,		somes from blowfly thoraces (Lewis	
Güttes and Rusch)	298	AND FOWLER)	564
Mucopolysaccharides, acid, micro-		Oxosteroids, differences in behaviour to-	
method for determination of N-acetyl		wards Girard reagent (LINDNER)	362
groups (Ludowieg and Dorfman)	212	Oxytocin, inactivation by uterine tissue,	
Mucopolysaccharides, sulphated —— re-		mechanism (Audrain and Clauser) .	494
lated to heparin, paper chromatog-		Oxytocin, isolation from chicken (ACHER,	
raphy (Spolter and Marx)	123	CHAUVET AND LENCI)	344
Mucoprotein, ovine submaxillary gland		Oxytocin, sheep, reconstitution of active	
, structure of prosthetic group		hormonal complex with vasopressin	
(Graham and Gottschalk)	513	and neurophysin (Chauvet, Lenci	
Muscle, lamellibranch —, chemical		AND ACHER)	266
studies on tropomyosins (Bailey and		Paper chromatography, see Chromatograph	
Rüegg)	239	Paramagnetic substances, effect of —— on	-
Muscle, partial specific volume of proteins		conversion of pyrimidines by u.v	
(KAY)	420	radiation (Beukers and Berends)	573
Mycobacterium tuberculosis, isolation, crys-		Pecten maximus, tropomyosins of adductor	
tallization and properties of tuberculin		muscle, chemical studies (BAILEY AND	
active peptide (Morisawa, Tanaka,		Rüegg)	239
Shojima and Yamamura)	252	Penicillinase, urea-modified, effect of sub-	
Nepenthes, RNase from —— (MATTHEWS)	552	strate on —— (CITRI AND GARBER)	50
Neurohypophysis, chicken, presence of		Pepsin, denaturation, effects of tempera-	
two vasopressins (Chauvet, Lenci		ture (Edelhoch)	113
and Acher)	571	Phosphatase, alkaline —, Escherichia	
Nitrogen fixation, Azotobacter vinelandii,		coli, fine-structure genetic and chemi-	
effect of oxygen (Parker and Scutt)	230	cal study (Garen and Levinthal)	470
Nitrogen fixation, in cell-free extracts of		Phosphatases, formation in Escherichia	
Clostridium pasteurianum (CARNAHAN,		coli, influences of inorganic phosphate	
MORTENSON, MOWER AND CASTLE)	188	(TORRIANI)	460
Nuclease, ribo —, from Nepenthes spp		Phosphate esters, paper chromatographic	
(MATTHEWS)	552	separation (RAPPOPORT AND CHEN).	156
Nuclei, changes in sodium and potassium	0	Phosphatides, mixed monolayers of β -	
content after irradiation (CREASY) .	181		539
Nucleic acid, desoxyribo —, isolated		Phospholipase A, venom —, hydrolysis	
from thermophile, thermal denatu-		of lecithins, fatty acid chain length	
ration of —— (MARMUR)	342	preference of —— (MARINETTI, ERB-	
Nucleic acid, metabolism in slime mold		LAND AND STOTZ)	534
with synchronous mitosis (NYGAARD,	0	Phospholipase A, venom —, hydrolysis of	
GÜTTES AND RUSCH)	298	lecithins, structure of formed lysoleci-	
Nucleic acid, ribo —, isolation of 5-	T 76	thins (MARINETTI, ERBLAND, TEMPLE	504
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170	AND STOTZ)	524
liver, action of polynucleotide phos-		Phosphorylation, coupled to electron	
		transport mediated by high potential	т.о.
phorylase (Singer, Luborsky, Mor-	£68	electron carriers (JACOBS AND SANADI) Phosphorylation, coupled to α-ketogluta-	12
RISON AND CANTONI)	568	rate oxidation Ehrlich secites mito-	
Nucleotide, diphosphopyridine —— and triphosphopyridine ——, demonstration		rate oxidation, Ehrlich-ascites mito- chondria (SILK AND HAWTREY)	247
of new form in rat-liver mitochondria		Phosvitin, simplified procedure for prepa-	347
(Purvis)	135	ration (Sundararajan, Sampath	
Nucleotide, reduced diphosphopyridine	433	Kumar and Sarma)	360
—, nature of fluorescence of com-		Plasmalogen, potentiometric iodometric	,
plexes of enzymes with —— (FISHER		determination (NORTON)	340
AND McGregor)	562	Plasmin, active center (Ronwin)	258
Nucleotides, desoxyribo —, determi-	J	Polynucleotide phosphorylase, action on	5-
nation, application of Cerriotti reaction		soluble RNA of rabbit liver (SINGER,	
(Park and Ullrich)	179	LUBORSKY, MORRISON AND CANTONI) .	568
Ovine submaxillary gland mucoprotein,		Polypeptides, stabilization of unstable	
prosthetic group (GRAHAM AND GOTT-		amino acids by desulphurization and	

hydrogenation using tritium (Keil		(Kochen, Crawford, Marinetti,	
AND ŠORM)	146	Morrison and Stotz)	553
Porphyrin c, crystalline synthetic —		[14C]Sucrose, volume of distribution in	
(NEILANDS AND TUPPY)	351	pellets of rat-liver mitochondria	
Potassium, content of cell nuclei, changes		(Share)	154
after irradiation (CREASY)	181	Sulphide, oxidation in biological systems,	
Potassium, thyroidal iodide transport and		mechanism (Sörbo)	349
cardiac glycosides, role of —— (Wolff)	316	Sulphydryl compounds, chloromercuri-	
Pregnenolone, conversion to dehydro-		benzoate resin for selective binding of	
epiandrosterone (Goldstein, Gut and		nonprotein — (McCormack, Gold-	
DORFMAN)	190	ZIEHER AND BESCH)	293
Protein, basic —, presence in micro-	-06	Temperature effects, on cellular level, kinetic studies (SOROKIN)	100
somes (Butler, Cohn and Simson).	300	Tendon, rat tail, reaction of water with	197
Protein, improved resolution of concen-		— (Elden and Boucek)	205
trated tissue extract in zonal column		Tetrahymena pyriformis, amino acid in-	205
electrophoresis (Sorof, Young, Spence and Fetterman)	550	corporation into proteins in cell-free	
Protein, muscle, partial specific volume	339	system, inhibition by chloramphenicol	
(KAY)	420	and chlortetracycline (MAGER)	150
Protein, rates of escape through mem-	7	Thiamin pyrophosphate, component of	- 5 -
branes (Hoch and Turner)	410	ketoglutarate dehydrogenase complex	
Protein, TMV, studies on N-terminal		(M. corres)	447
sequence (Tsugita)	145	Thymidine diphosphate rhamnose, iso-	
Protein, wheat, physical structure (GRoss-		lation from Escherichia coli (OKAZAKI,	
KREUTZ)	400	Okazaki and Kuriki)	384
Proteus morganii, feedback control on syn-		Thyroidal iodide transport, cardiac glyco-	
thesis of enzymes by amino acids		sides and role of potassium (Wolff).	316
during growth (Bourgeois, Wiame		Tissue culture, inhibition of growth of	
AND LELOUCHIER-DAGNELIE)	136	mammalian cells by liver extracts	
Pseudomonas aeruginosa, assimilation and		(LIEBERMAN AND OVE)	153
metabolism of guanidine by —		Tobacco mosaic virus, see Virus	
(Bernheim)	173	[14C]-a-Tocopherol, reactivation of iso-	
Pyrimidines, effect of paramagnetic sub-		octane-extracted DPNH-cytochrome c	
stances on conversion of —— by u.v		reductase with —, observations	
radiation (BEUKERS AND BERENDS).	573	(DRAPER AND CSALLANY)	101
Pyrimidines, halogenated ——, effects on growth of TMV (STAEHELIN AND		TPNH-oxidase, activity of rat-liver mito- chondria (ERNSTER)	T. 77.0
GORDON)	307	Transhydrogenase, activity of rat-liver	170
Rennin, proteolysis of α-casein, immuno-	307	mitochondria (ERNSTER)	170
logical study (GARNIER)	246	3,5,3'-Triiodothyronine, sulfoconjugate,	170
Ribonuclease, see Nuclease	•	metabolism in rat (Roche, Michel,	
Ribonucleic acid, see Nucleic acid		CLOSON AND MICHEL)	325
Ribonucleoside-5'-polyphosphates, syn-		Triphosphopyridine nucleotide, demon-	0 0
thesis (Kessler, Moss and Chambers)	549	stration of new form in rat-liver mito-	
Saccharomyces carlsbergensis, study on		chondria (Purvis)	435
respiratory deficiency (Навоисна анд		Tropomyosins, lamellibranch muscle,	
Masschelein)	1	chemical studies (BAILEY AND RÜEGG)	239
Sialic acid, inactivation of follicle-stimu-		Trypsin, active and inactive modifications	
lating hormone by enzymic release of		induced by acetylation (Wong and	_
GOTTSCHALK, WHITTEN AND	~ O ~	LIENER)	80
GRAHAM)	103	Trypsin, disopropylphosphoryl-	
Sodium, content of cell nuclei, changes		peptides isolated from peptic hydrol- ysate of —— (Tomášek, Holevšovský,	
after irradiation (CREASY)	т.8 т	Mikeš and Šorm)	
Sporidesmium bakeri, sporidesmolic acid	101	Trypsin, hydrolysis of benzoyl-L-arginine	570
B, a hydroxyacyl-dipeptide from —		ethyl ester, kinetics in dioxane-water	
(Russell and Brown)	382	mixtures (Inagami and Sturtevant)	64
Sporidesmolic acid B, a hydroxyacyldi-	-	Tuberculin active peptide, isolation, crys-	~4
peptide from Sporidesmium bakeri		tallization and properties (Morisawa,	
(Russell and Brown)	382	Tanaka, Shojima and Yamamura) .	252
Δ^{1} -Steroid dehydrogenase, studies (Sih		Tumour, Ehrlich-ascites —, phosphoryl-	٠
AND BENNETT)	378	ation coupled to α-ketoglutarate oxi-	
Succinate-cytochrome c reductase system,		dation in mitochondria (SILK AND	
reactivation by hydrocarbon residue		HAWTREY)	347

Ubichromenol, conversion of ubiquinone		by phospholipase A, structure of	
to —— (Links)	193	formed lysolecithins (MARINETTI, ERB-	
Ubiquinone, conversion to ubichromenol		LAND, TEMPLE AND STOTZ)	524
(Links)	193	Virus, tobacco mosaic, effects of	
Ultracentrifugation, method for plotting		halogenated pyrimidines on growth	
diagrams for polydisperse systems		(STAEHELIN AND GORDON)	307
(Anderson and Canning)	367	Virus, tobacco mosaic, studies on N-	
Vasopressin, presence of two in neuro-		terminal sequence of protein (TSUGITA)	145
hypophysis of chicken (Chauvet,		Vitamin B ₁₂ , function in methylmalonate	
Lenci and Acher)	57 1	metabolism (Gurnani, Mistry and	
Vasopressin, sheep, reconstitution of ac-		Connor Johnson)	187
tive hormonal complex with oxytocin		Vitellin, simplified procedure for prepa-	
and neurophysin (Chauvet, Lenci		ration (Sundararajan, Sampath	
AND ACHER)	266	Kumar and Sarma)	360
Venom, cobra, observations on adenosine		Yeast, activation of oxidative pentose	
phosphatases (KAYE)	34	phosphate cycle by ammonium salts	
Venom, snake —, hydrolysis of lecithins		(Holzer and Witt)	163
by phospholipase A, fatty acid chain		Yeast, inhibition of carboxylase by acet-	
length preference of enzyme (MARI-		aldehyde (Gruber and Wassenaar).	355
NETTI, ERBLAND AND STOTZ)	534	Yeast, study on respiratory deficiency	
Venom, snake —, hydrolysis of lecithins		(Haboucha and Masschelein)	1

ERRATA

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 35

Page 326, line 3: For ref. 1 read Eqn. (1).

Page 327, legends of the two figures should be interchanged.

Page 521, legend Fig. 1: For (a) read (b); for (b) read (a).

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 36

Page 22, Table I, headings of 3rd and 4th columns: For DPN read TPN and for TPN read DPN.

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 37

Page 77, ACKNOWLEDGEMENTS: Add: "P.P. is Attaché de Recherches de l'Institut National d'Hygiène, Paris, France, Research Fellow of the Ministère des Affaires Etrangères Françaises (Direction des Relations Culturelles)."

Page 164, legend Table I, between 5th and 6th line insert. "yeast enzyme⁶), 0.18 μ mole, 110·10³ counts/min was added. The methionine vessel included".

Pages 245, 247 and 249, running title: For RNA read DNA.

Pages 484, 486, 488 and 490, running title: For Suomaleinen read Suomalainen.